THE FIRST EXOTIC CLASS OF A MANIFOLD

BY DAVID L. FRANK(1)

Let BF be the classifying space for stable oriented spherical fibrations. Gitler and Stasheff have defined a cohomology class e_1 in $H^{pr-1}(BF; \mathbb{Z}_p)$, where here (and throughout this paper) p is an odd prime and r=2(p-1). For a discussion of the nature and significance of this class, see the introductions to [2], [4], [7].

Suppose P is a (pr-1)-dimensional oriented Poincaré complex. Let ν be the stable normal spherical fibration of P, i.e., the unique stable spherical fibration with reducible Thom complex [6]. Define $e_1(P)$ to be $e_1(\nu)$. Similarly, define $q_i(P)$ to be $q_i(\nu)$, where q_i is the *i*th Wu class. It is clear that $e_1(P)$ depends only on the homotopy type of P. We wish, however, to express $e_1(P)$ in terms of an explicit invariant of the homotopy type of P.

In fact, we will construct a certain nonstable secondary cohomology operation Ω , mapping cohomology classes of dimension r into classes of dimension pr-1 (\mathbb{Z}_p coefficients), such that

THEOREM 1. $\Omega(q_1P)$ is defined with zero indeterminacy, and $\Omega(q_1P) = e_1(P)$.

REMARK. In the course of the proof of Theorem 1, we will give a construction of the class e_1 which is rather different from that given by Gitler and Stasheff.

Theorem 1 allows us to compute $e_1(P)$ —at least in principle, and often in practice. For example,

THEOREM 2. There is a Poincaré complex P of the homotopy type of

$$(S^r \vee S^{(p-1)r-1}) \cup e^{pr-1}$$

such that $e_1(P) \neq 0$.

In another paper these results will be applied to the study of the existence of differential structures on manifolds of dimension pr-1. Indeed, let Γ_i be the group of exotic *i*-dimensional spheres, and let Γ_i' be the quotient of Γ_i by the subgroup of spheres bounding parallelizable manifolds. According to [3], *p*-torsion first appears in the groups Γ_i' precisely when i=pr-2; in fact, if pG denotes the *p*-primary component of G, then ${}^p\Gamma_{i'r-2}'=Z_p$. Moreover, $\Gamma_i=\Gamma_i'$ for i even, so ${}^p\Gamma_{pr-2}=Z_p$. Now let M be a differential manifold (all manifolds are compact and oriented) of

Received by the editors June 2, 1969.

⁽¹⁾ The author was a National Science Foundation Postdoctoral Fellow and is partially supported by the Air Force Office of Scientific Research, Office of Aerospace Research, under Contract No. F44620-67-C-0029.

dimension pr-1, whose boundary ∂M is an exotic sphere. Let $[\partial M]_p \in {}^p\Gamma_{pr-2}$ be the *p*-primary component of this exotic sphere. Also, let M^* be the closed topological manifold $M \cup \text{Cone } (\partial M)$.

THEOREM 3. $[\partial M]_p = 0$ if and only if $\Omega(q_1 M^*) = 0$.

Thus $\Omega(q_1M^*)$ measures the *p*-primary component of the obstruction to smoothing M^* . Using this result, one can construct a manifold M whose boundary is a generator Σ_p of ${}^p\Gamma_{pr-2}$.

THEOREM 4. Σ_p bounds a manifold of the homotopy type of $S^r \vee S^{(p-1)r-1}$.

We postpone proofs of Theorems 3 and 4 to a later paper, where results on higher-dimensional exotic spheres not bounding parallelizable manifolds will also be given.

REMARK. A proof of Theorem 4 for the case p=3 was given in [1]. A similar proof does not work when $p \ge 5$ because the appropriate element of $\pi_{pr-2}(S^r)$ is in the image of the *J*-homomorphism only when p=3. In particular, Σ_p bounds a "plumbed" manifold only when p=3.

The proof of Theorem 1 uses recent techniques of E. Thomas. I am very grateful to Professor Thomas for teaching me about his methods.

1. Definition of the operation Ω . Let $q_i \in H^{ir}(BSO; \mathbb{Z}_p)$ be the *i*th Wu class; let P^i be the *i*th Steenrod power (for the prime p).

LEMMA 1.1. If j < p, then

$$q_i \doteq b_i P^{j-1}(q_1) + R_i(q_1, P^1(q_1), \dots, P^{j-2}(q_1)),$$

where $b_j \in \mathbb{Z}_p$ is nonzero, and R_j is a polynomial in j-1 variables.

Proof. If j = 1, clear. Assume the lemma for all t < j; let U be the universal Thom class. Then

$$\begin{aligned} q_j \cdot U &= P^j(U) = b_j P^{j-1} P^1(U), & \text{by an Adem relation} \\ &= b_j P^{j-1}(q_1 \cdot U) \\ &= b_j \left[P^{j-1}(q_1) \cdot U + \sum_t P^{j-1-t}(q_1) \cdot P^t(U) \right], \end{aligned}$$

where the summation runs from 1 to j-1,

$$= b_{j} \left[P^{j-1}(q_{1}) \cdot U + \sum_{t} P^{j-1-t}(q_{1}) \cdot q_{t} \cdot U \right].$$

Therefore,

$$q_j = b_j \left[P^{j-1}(q_1) + \sum_t P^{j-1-t}(q_1) \cdot q_t \right].$$

Since, by assumption, q_t is a polynomial in $q_1, \ldots, P^{t-1}(q_1)$, the lemma follows by induction.

To define the operation Ω , we will display its universal example. Let K_i (i>0) be an Eilenberg-MacLane space $K(Z_p, i)$ and let u_i be the fundamental class in $H^i(K_i)$ (Z_p coefficients always).

We define a class $v \in H^{(p-1)r}(K_r)$ by the formula

$$v = b_{p-1}P^{p-2}(u_r) + R_{p-1}(u_r, P^1(u_r), \ldots, P^{p-3}(u_r)),$$

where b_{p-1} and R_{p-1} are as in Lemma 1.1.

We have the diagram

$$K_{(p-1)r-1} \xrightarrow{i} E$$

$$\downarrow^{\pi}$$

$$K_r \xrightarrow{v} K_{(p-1)r}$$

where π is the fibration induced by v from the path-loop fibration on $K_{(p-1)r}$, and i is the inclusion of the fiber. (We refer to such a diagram as the principal fibration determined by v.)

Associated to this fibration we have the Thomas exact sequence ([10, p. 187]; see also, [5], [11])

(*)
$$H^{j}(K_{r}) \xrightarrow{\pi} H^{j}(E) \xrightarrow{\mu} H^{j}(K_{(p-1)r-1} \times E, E) \xrightarrow{\tau} H^{j+1}(K_{r}),$$

valid for all j < 2(p-1)r-2.

Define $\alpha \in H^{pr-1}(K_{(p-1)r-1} \times E, E)$ by

$$\alpha = P^1 u \otimes 1 + u \otimes \pi^*(u_r),$$

where $u = u_{(p-1)r-1}$.

LEMMA 1.2. $\tau(\alpha) = 0$.

Proof. Using properties of τ [10, p. 188], we have

$$\tau(\alpha) = P^{1}(\bar{\tau}(u)) + \bar{\tau}(u) \cup u_{r} = P^{1}v + v \cup u_{r}$$

where $\bar{\tau}$ is the usual transgression.

Let $f: BSO \to K_r$ satisfy $f^*(u_r) = q_1$. By [2, Lemma 3.3], kernel f^* is generated, in dimensions $\leq pr$, by those elements in the Cartan basis containing a Bockstein. Therefore, it suffices to show $f^*(\tau(\alpha)) = 0$. But note that $f^*(v) = q_{v-1}$. Thus

$$f^*(\tau(\alpha)) = f^*(P^1v + v \cup u_{\tau}) = P^1(q_{\tau-1}) + q_{\tau-1} \cup q_1$$

= 0 (by a Wu formula)

which proves the lemma.

Since $\tau(\alpha) = 0$, there is, by exactness of (*), an $\omega \in H^{pr-1}(E)$ with $\mu(\omega) = \alpha$. We take ω to be the universal representative for the operation Ω . Thus Ω is defined on those classes $x \in H^r(X)$ for which v(x) = 0; the indeterminacy subgroup of $\Omega(x)$ is the image of the homomorphism $H^{(p-1)r-1}(X) \to H^{pr-1}(X)$ given by (see [10], [5]) $c \to P^1c + c \cup x$.

2. A result of Thomas. We quote a result which we will need in the proof of Theorem 1. Suppose we have a principal fibration

$$K_{j\tau-1} \xrightarrow{i} E$$

$$\downarrow^{\pi}$$

$$B \xrightarrow{c} K_{j\tau}.$$

Let $k \in H^t(E)$, where t < 2jr - 2, and let $i^*(k) = \alpha(u_{jr-1})$ for some α in A_p , the Steenrod algebra. Assume there is a spherical fibration ξ over B with $q_j(\xi) = c$. Moreover, assume there is an Adem relation $\alpha P^j = 0$, and let Φ be an associated secondary operation. Let U_E be the Thom class of $\pi^*(\xi)$. Note that Φ is defined on U_E .

PROPOSITION 2.1. There is a class $d \in H^t(E)$ such that $i^*(d) = i^*(k)$ and

$$d \cdot U_E \in \Phi(U_E)$$
.

Proof. This is a special case of the mod p analogue of Theorem 6.4 of [9]. (Set B' = point, $k' + p^*m = d$ in that theorem. Thomas states his result only for vector bundles, but the proof is the same when ξ is a spherical fibration.)

3. **Proof of Theorem 1.** We deduce Theorem 1 from a more general result. Let β be a (k-1)-dimensional oriented spherical fibration over a complex X. Let $T(\beta)$ be the Thom complex of β and U_{β} the Thom class in $H^k(T(\beta))$. Let Φ be the secondary cohomology operation associated to the Adem relation $P^1P^{p-1}=0$. Assume that the Wu class $q_{p-1}(\beta)=0$. Note that $\Phi(U_{\beta})$ is then defined.

THEOREM A. Given β as above, $\Omega(q_1(\beta))$ is defined and

$$[\Omega(q_1(\beta)) - e_1(\beta)] \cdot U_{\beta} = \Phi(U_{\beta}).$$

In particular, these two expressions have the same indeterminacy.

Before proving Theorem A, we give the

Proof of Theorem 1. Let ν be the normal spherical fibration of P. Since $T(\nu)$ is S-dual to P^+ (=P with a disjoint basepoint), $P^{p-1}(U_{\nu})=0$ if and only if the homomorphism

$$c(P^{p-1}): H^{r-1}(P) \to H^{pr-1}(P)$$

is trivial, where c is the canonical anti-isomorphism of A_p . (Compare [8, Chapter III, Proposition 1.4].) But $c(P^{p-1})$ is a multiple of P^{p-1} , and P^{p-1} is zero on (r-1)-dimensional classes. Therefore $P^{p-1}(U_p)=0$, i.e., $q_{p-1}(\nu)=0$.

Since $q_{p-1}(\nu)=0$, we may apply Theorem A to ν . Now $T(\nu)$ is reducible (that is, the top cohomology class is spherical), so $\Phi(U_{\nu})=0$, with zero indeterminacy. Therefore

$$[\Omega(q_1(\nu)) - e_1(\nu)] \cdot U_{\nu} = 0,$$

so $\Omega(q_1P) = e_1(P)$, with zero indeterminacy, which proves Theorem 1.

Proof of Theorem A. First note that $v(q_1(\beta)) = q_{p-1}(\beta) = 0$, so, Ω is defined on

Also, the indeterminacy of $\Phi(U_{\theta})$ consists of all elements of the form $P^{1}(c \cdot U)$, $c \in H^{(p-1)r-1}(X)$. If $\{P^1(c \cdot U)\}$ denotes the set of all such elements, then

$$\{P^{1}(c \cdot U)\} = \{[P^{1}(c) + c \cup q_{1}(\beta)] \cdot U\}$$

= [indeterminacy of $\Omega(q_{1}(\beta))] \cdot U$.

Therefore $[\Omega(q_1(\beta)) - e_1(\beta)] \cdot U_{\beta}$ and $\Phi(U_{\beta})$ have the same indeterminacy. Thus to prove Theorem A, we need only show they have a common representative.

Let BF(m), m large, be the classifying space for (m-1)-dimensional oriented spherical fibrations, and let ξ be the universal (m-1)-dimensional fibration.

Consider the principal fibration

Consider the principal horation
$$K_{(p-1)r-1} \xrightarrow{i_1} E_1$$

$$\downarrow^{\pi_1} \qquad \qquad \downarrow^{\pi_1}$$

$$BF(m) \xrightarrow{q_{p-1}} K_{(p-1)r}.$$
Since $q_{p-1} = v(q_1)$, we have a commutative diagram

Since $q_{p-1} = v(q_1)$, we have a commutative diagram

$$K_{(p-1)r-1} = K_{(p-1)r-1}$$

$$i_{1} \downarrow \qquad \qquad \downarrow i$$

$$E_{1} \xrightarrow{g} E$$

$$\pi_{1} \downarrow \qquad \qquad \downarrow \pi$$

$$BF(m) \xrightarrow{q_{1}} K_{r} \xrightarrow{v} K_{(p-1)r}$$

Let $k = g^*(\omega)$. Then, by definition, $k \in \Omega(\pi_1^*(q_1))$.

Let δ over E_1 be the spherical fibration $\pi_1^*(\xi)$. We claim

(*)
$$(k - e_1(\delta)) \cdot U_{\delta} \in \Phi(U_{\delta}).$$

Notice that Theorem A follows immediately from (*), for if $\beta: X \to BF(m)$ is a spherical fibration with $q_{p-1}(\beta) = 0$, then β lifts to $f: X \to E_1$. By naturality, $(f^*(k) - e_1(\beta)) \cdot U_\beta \in \Phi(U_\beta)$ and $f^*(k) \in \Omega(q_1(\beta))$. Thus $(f^*(k) - e_1(\beta)) \cdot U_\beta$ is the required common representative.

To show (*), we apply Proposition 2.1 to the fibration (3.1), with $\alpha = P^1$. We conclude that there is a class $d \in H^{pr-1}(E_1)$ with $i^*(d) = i^*(k)$ and

$$(**) d \cdot U_{\delta} \in \Phi(U_{\delta}).$$

LEMMA 3.2. $k = d + \pi_1^*(z)$, for a unique $z \in H^{pr-1}(BF(m))$.

Proof. It is easy to see that $H^i(BF) = 0$, i < r, and $H^r(BF) = \mathbb{Z}_p$, with q_1 as

generator. (For example, see [4].) It follows that any $\alpha \in H^{pr-1}(K_{(p-1)r-1} \times E_1, E_1)$ can be written in the form

$$aP^{1}(u) \otimes 1 + u \otimes \pi_{1}^{*}(b \cdot q_{1}), \qquad a, b \in \mathbb{Z}_{p}.$$

Let

$$\mu: H^{pr-1}(E_1) \to H^{pr-1}(K_{(p-1)r-1} \times E_1, E_1)$$

be the map in the Thomas exact sequence for the fibration (3.1). If $i_1^*(x) = 0$, $x \in H^{pr-1}(E_1)$, then $\mu(x) = u \otimes \pi_1^*(b \cdot q_1)$. Now $0 = \tau \mu(x) = b(q_{p-1} \cup q_1)$. This implies b = 0, since $q_{p-1} \cup q_1 \neq 0$. Therefore, $i_1^*(x) = 0$ implies $\mu(x) = 0$. By exactness, $x = \pi_1^*(z)$. Moreover, a glance at the Thomas exact sequence shows that

$$\pi_1^*: H^{pr-1}(BF(m)) \to H^{pr-1}(E_1)$$

is injective, so z is unique. Since $i_1^*(k-d)=0$, the lemma follows.

LEMMA 3.3. The class z which occurs in Lemma 3.2 is nonzero.

Proof. Let $h: S^{pr-1} \to BF(m)$ be a generator of ${}^p\pi_{pr-1}(BF(m)) = \mathbb{Z}_p$. Note that h lifts to $f: S^{pr-1} \to E_1$. By Lemma 3.2, $f^*(k) = f^*(d) + h^*(z)$.

Now $f^*(k) \in \Omega(q_1(h)) = 0$, with zero indeterminacy, so $f^*(d) = -h^*(z)$. By (**), $f^*(d) \cdot U_h \in \Phi(U_h)$.

But the Thom complex T(h) is of the form $S^m \cup_{\beta_1} e^{m+pr-1}$, where β_1 is a generator of ${}^p\pi_{pr-2}$ (see [2]), and Φ acts nontrivially in this complex, i.e., $\Phi(U_h) \neq 0$, with zero indeterminacy. Therefore $z \neq 0$.

We now define e_1 to be the class z. Then

$$d = k - \pi_1^*(e_1) = k - e_1(\delta).$$

Together with (**), this shows (*), and proves Theorem A. Alternatively, we may show that z is equal to the class defined in [2], which we will call \bar{e}_1 . Since $H^{pr-1}(BF)$ is at most Z_p [4], $\bar{e}_1 = bz$, $b \in Z_p$ nonzero. According to [2], if Ψ is the secondary operation corresponding to the relation $P^1(P^1)^{p-1} = 0$, then $h^*(\bar{e}_1) \cdot U_h \in \Psi(U_h)$. Now $(P^1)^{p-1} = (p-1)! P^{p-1} = -P^{p-1}$, so $-h^*(\bar{e}_1) \cdot U_h \in \Phi(U_h)$. But $-h^*(z) \cdot U_h \in \Phi(U_h)$. Therefore $\bar{e}_1 = z$.

4. **Proof of Theorem 2.** Theorem 2 follows easily from

PROPOSITION 4.1. There is a $\beta \in \pi_{pr-2}(S^r)$ such that if $X = S^r \cup_{\beta} e^{pr-1}$, then $\Omega: H^r(X) \to H^{pr-1}(X)$ is nontrivial. (Clearly Ω is defined with zero indeterminacy.)

Assuming Proposition 4.1, we prove Theorem 2. Recall that

$$\pi_{i+j-1}(S^i \vee S^j) = \pi_{i+j-1}(S^i) \oplus \pi_{i+j-1}(S^j) \oplus Z, \quad (i, j \ge 2)$$

where the infinite cyclic factor is generated by the Whitehead product $[e_i, e_j]$ of the inclusions $e_t : S^t \to S^i \lor S^j$, t = i, j.

If $f \in \pi_{i+j-1}(S^i \vee S^j)$, we write

$$f = f_i \oplus f_j \oplus H_f, \quad f_t \in \pi_{i+j-1}(S^t), \quad H_f \in Z.$$

If $i \neq j$, it is easy to see that $(S^i \vee S^j) \cup_f e^{i+j}$ is a Poincaré complex if and only if $H_f = \pm 1$. We write $P(f_i, f_j)$ for the Poincaré complex $(S^i \vee S^j) \cup_f e^{i+j}$, where $f = f_i \oplus f_j \oplus 1$. Now let i = r, j = (p-1)r-1. Let $\alpha \in \pi_{pr-2}(S^{(p-1)r-1})$ be a map such that $P^1: H^{(p-1)r-1}(Y) \to H^{pr-1}(Y)$ is nontrivial, where $Y = S^{(p-1)r-1} \cup_{\alpha} e^{pr-1}$ (see [8, p. 89]). Let $P = P(\beta, \alpha)$, with β as in Proposition 4.1.

We claim $e_1(P) \neq 0$. By Theorem 1, $\Omega(q_1P)$ is defined with zero indeterminacy, and $e_1(P) = \Omega(q_1P)$. But there is a map $c: P \to X = S^r \cup_{\beta} e^{pr-1}$ such that $c^* \colon H^t(X) \to H^t(P)$ is an isomorphism for $t \neq (p-1)r-1$ (collapse $S^{(p-1)r-1}$ to a point). By naturality, $\Omega \colon H^r(P) \to H^{pr-1}(P)$ is an isomorphism. Thus it suffices to show $q_1(P) \neq 0$; this follows from the fact that $P^1 \colon H^{(p-1)r-1}(P) \to H^{pr-1}(P)$ is nontrivial.

This proves Theorem 2, except for the proof of Proposition 4.1, which we now give. The following lemma is certainly known to the dedicated homotopy theorists (for completeness, we give a proof).

LEMMA 4.2. There exist a complex

$$L = S^{2r-2} \cup e^{3r-2} \cup \cdots \cup e^{(p-1)r-2}$$

and maps

$$g: L \to S^{r-1}, \quad h: S^{pr-3} \to L$$

such that

- (1) $P^1: H^{ir-2}(L) \to H^{(i+1)r-2}(L)$ is nontrivial, $2 \le i \le p-2$.
- (2) The functional operation $P_q^1: H^{r-1}(S^{r-1}) \to H^{2r-2}(L)$ is nontrivial.
- (3) The functional operation $P_h^1: H^{(p-1)r-2}(L) \to H^{pr-3}(S^{pr-3})$ is nontrivial.

Proof. Suppose inductively that we have constructed a complex

$$L(i-1) = S^{2r-2} \cup e^{3r-2} \cup \cdots \cup e^{(i-1)r-2}, \quad i \leq p-1.$$

and a map $g(i-1): L(i-1) \to S^{r-1}$ such that the functional operation $P_{g(i-1)}^1$ is nontrivial.

We define

$$L(i) = \sum [S^{r-1} \cup_{g(i-1)} \text{Cone}(L(i-1))],$$

where \sum is the (r-1)-fold suspension.

To define $g(i): L(i) \to S^{r-1}$, we use the following lemma.

LEMMA 4.3. Let (A, B) be a pair of complexes which is the suspension of a pair (A', B'), and let Y be a space which is n-simple for all n. Suppose $f: B \to Y$ is of order p in the group of homotopy classes [B, Y]. If, for all i, $H^{i+1}(A, B; \pi_i(Y))$ is finite and has trivial p-primary component, then f extends over A.

Proof. Left to reader. (Hint: Given a partial extension F of f, the obstruction cohomology class c_F has order t, $t \not\equiv 0(p)$. Take s with $st \equiv 1(p)$. Then st(F)|B=f and $c_{st(F)}=0$.)

Let $\alpha: S^{2\tau-2} \to S^{\tau-1}$ be a map which is of order p in $\pi_{2\tau-2}(S^{\tau-1})$; then the functional operation P^1_{α} is nontrivial [8, p. 90]. Since ${}^p\pi_{j\tau-3}(S^{\tau-1})=0$ for $j \le p-1$ [12], Lemma 4.3 implies that α extends to a map $g(i): L(i) \to S^{\tau-1}$.

Thus we may construct L(p-1) and $g(p-1): L(p-1) \to S^{r-1}$. We may also construct the complex L(p) (but not the map g(p)). Let

$$L = ((p-1)r-2)$$
-skeleton of $L(p)$,
 $h: S^{pr-3} \to L = \text{attaching map of the } (pr-2)$ -cell of $L(p)$,
 $g: L \to S^{r-1} = \text{an extension of } \alpha: S^{2r-2} \to S^{r-1}$.

It is easy to see that the L, g, and h we have constructed satisfy conditions (1), (2), and (3).

Now let $\beta' \in \pi_{pr-3}(S^{r-1})$ be the composite gh, and let β be the suspension of β' . Also, let

$$X' = S^{r-1} \cup_{\beta'} e^{pr-2}, \qquad X = \text{suspension of } X' = S^r \cup_{\beta} e^{pr-1}.$$

To show $\Omega: H^r(X) \to H^{pr-1}(X)$ is nontrivial, it suffices to show

$$\Omega': H^{r-1}(X') \to H^{pr-2}(X')$$

is nontrivial, where Ω' is the secondary operation whose universal example is obtained by applying the loop functor to the universal example for Ω . Thus the universal example for Ω' is

$$K_{(p-1)r-2} \longrightarrow E'$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Since $v = bP^{p-2} + \text{product terms}$, $b \in \mathbb{Z}_p$ nonzero, $v' = bP^{p-2}$. (Informally, Ω' is the secondary operation associated to the relation $P^1P^{p-2} = 0$ on classes of dimension r-1.)

There is a commutative ladder of cofibrations

Using conditions (1) and (2) of Lemma 4.2 (and the fact that $P^{p-2} = b'(P^1)^{p-2}$), we see that the functional operation

$$P_F^{p-2}: H^{r-1}(X') \to H^{(p-1)r-2}(L \cup e^{pr-2})$$

is nontrivial. Using condition (3) of Lemma 4.2, we see that

$$P^1: H^{(p-1)r-2}(L \cup_h e^{pr-2}) \to H^{pr-2}(L \cup_h e^{pr-2})$$

is nontrivial. A Peterson-Stein formula [5] shows that

$$\Omega': H^{r-1}(X') \to H^{pr-2}(X')$$

is nontrivial. This completes the proof of Proposition 4.1.

REFERENCES

- 1. D. Frank, An invariant for almost-closed manifolds, Bull. Amer. Math. Soc. 74 (1968), 562-567.
 - 2. S. Gitler and J. Stasheff, The first exotic class of BF, Topology 4 (1965), 257-266.
 - 3. M. Kervaire and J. Milnor, Groups of homotopy spheres, Ann. of Math. 77 (1963), 504-537.
- 4. J. Milnor, On characteristic classes for spherical fiber spaces, Comment. Math. Helv. 43 (1968), 51-77.
- 5. F. Peterson and N. Stein, Secondary cohomology operations: two formulas, Amer. J. Math. 81 (1959), 281-305.
 - 6. M. Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967), 77-102.
- 7. J. Stasheff, More characteristic classes for spherical fiber spaces, Comment. Math. Helv. 43 (1968), 78-86.
- 8. N. Steenrod and D. Epstein, *Cohomology operations*, Ann. of Math. Studies No. 50, Princeton Univ. Press, Princeton, N. J., 1962.
 - 9. E. Thomas, The index of a tangent 2-field, Comment. Math. Helv. 42 (1967), 86-110.
- 10. ——, Postnikov invariants and higher order cohomology operations, Ann. of Math. 85 (1967), 184-217.
 - 11. ——, Seminar on fiber spaces, Springer-Verlag, Berlin, 1966.
- 12. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies No. 49, Princeton Univ. Press, Princeton, N. J., 1962.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS